Solar Energy Deployment in the UAE: The role of the Masdar Institute

- Solar Resource Assessment
- The effect of CSR (Circum-Solar Ratio)
- The role of dust in the UAE
- Power Demand in the UAE
- Research projects

Solar is a good idea in the Middle East and even better in Australia

Concentrated Solar Power (CSP)

For concentrate solar power, the direct the Direct Normal Irradiance (DNI) is a more relevant measure of the solar resource.

Concentrating solar technologies can only focus sunlight coming from one direction, and use tracking mechanisms to align their collectors with the direction of the sun.

Concentrating Solar Thermal Technologies makes use of DNI

DNI is the solar radiation measured at a given location on earth with a surface element perpendicular to the sun ray.

Surface

Sometimes it's not so clear... and the yearly DNI is not so great

Yearly DNI in the UAE is only 1934 kWh/m^2/yr.

Locations in Spain have DNI from **2,000-2,300 kWh/m^2/yr**, and the best location in the U.S. Southwest have DNI of **2,800 kWh/m^2/yr**

Utilities Mapping added on solar assessment by DLR

Ground data Measuring equipment

Satellite Solar Maps vs. Ground Data Measurements

Month

Satellite data overestimates the measured DNI of more than 15% throughout the year due to the fact that the model used to interpret the data do not account for high aereosol loading in the atmosphere. (bankability of shams 1)

Y. Eissa, M. Chiesa and H. Ghedira "Assessment and Recalibration of the Heliosat-2 Method in Global Horizontal Irradiance Modeling over the Desert Environment of the UAE" *Solar Energy* Volume 86, Issue 6, June 2012, Pages 1816–1825

Choice of Thermal Channels

Choice of Thermal Channels

T 07

LENS

Solar Assessment usually based on satellite data, that is not that easy

Spatial Variations: Heavy Dusty Day

Spatial Variations: Moderate Dusty Day

26

Spatial Variations: Clear Day

DNI & GHI Estimation Scatter Plots

Measuring equipment: dust focused tools

CIMEL is a tracking, multi-filter radiometer used primarily for inferring aerosol concentrations from atmospheric extinction coefficients by performing Langley analysis in 13 bands of the solar spectrum.

The SAM is a tracking camera in which the circumsolar image is captured by a CCD camera. This gives a measure of atmospheric scattering of direct solar radiation.

Ground Data Measurements

Effect of Sun Shape on CSP Technology

□ Concentrating solar collectors are designed with angular acceptance angles which are relatively close to the angular size of the solar disk 0.266°. (maximization of the capture radiation and minimization of the thermal radiation from the receiver)

□ Concentrated technology make use of the direct component of the incoming radiation, but the DNI measurements instruments have angular acceptance angle which is ten times greater than the size of the solar disk.

The solar profile in the UAE has never been investigated, but due to the high aerosols concentration characterizing the climate in the UAE, we expect high CSR

Effect of CSR on power output of euro troughs

Concentration Ratio

Sunshape Profiling Irradiometer

- Low cost (like RSB)
- Reliable unattended operation (like RSB)
- Simple alignment and operation
- (Aerosol optical depth in several wavelength bands)
- (Circumsolar radiation profile in several wavelength bands)

The shadow of the rotating shadowband covers, progressively, larger portions of the sun allowing to calculate the "sunshape" effect of atmospheric light scattering.

Kalapatapu, R., Armstrong, P., & Chiesa, M. (2011). Rotating Shadowband for the Measurement of Sunshapes. Solar Paces. Granada

Sunshape Profiling Irradiometer

Bracket holding the Receiver

Stepper Motor

Latitude Adjustment Bracket

Licor's Receiver

Sunshape Profiling Irradiometer: Preliminary Results

Surface Treatment to Reduce H₂O Needs

Demand vs Solar Resources

Power Demand in the UAE: The Abu Dhabi island case

Muhammad Tauha Ali³, <u>Marwan Mokhtar¹</u>, Matteo Chiesa, Peter R Armstrong "<u>A</u> <u>cooling change-point model of community-aggregate electrical load</u>" *Energy and Buildings* Vol. 43 Issue 1 Pages 28-37, 2011

Today's Power Plant Park to Satisfy the Load Curve

100% = 5 GW in yr 2008.

Possible CSP final penetration (beyond 2030)

Max. possible PV penetration

100% = 20 GW in yr 2020

The mid load plants, which would be fully replaced by CSP plants need to be maintained by the utility, because the PV plants can only run when the sun shines, and do not replace capacity. Therefore the utility will only pay the saved fuel and variable O&M cost.

Shams 1: 110 MW CSP plant

- Parabolic Trough Solar Power Plant with gas fired booster
- **Booster power share:**
- HTF Heater:
- Nominal net Capacity:
- Area required:
- Cooling:
- Annual power generation:
- Location:
- DNI at site:
- Soil Condition:
- Power export @:

18% of heat input 150 MW_{th} => 50 Mw_{el} (Firm Output) 110 MW_{el} (@ 730 W/m²) 2.6 km² Dry Cooling (ACC) Approx. 210 GWh Madinat Zayed (Western Region) 1934 kWh/m²/a Desert with sand dunes 220 kV

Shams 1: 100 MW CSP plant

Plant Process

Beam Splitting concept for new PV architecture

M. Stefancich, A Zayan, S. Rampino, D. Roncati, L. Kimerling, J. Michel and M. Chiesa **"Single element spectral splitting solar concentrator for multiple cells CPV system**" Optics Express, Vol. 20, Issue 8, pp. 9004-9018 (2012) http://dx.doi.org/10.1364/OE.20. 009004

Solar Thermoelectric Power Generator

- Solid state solar-toelectric power conversion based on Seebeck effect
- Vacuum STEG design enables large optimum thermal concentration
- Minimum usage of thermoelectric material

Energy Transport in Nanostructures: Thermo-Electric Energy Conversion

Solar Thermoelectric Power Generator

Solar Thermoelectric Power Generator

light source: solar simulator with AM1.5G filter

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, 3 D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen **Solar thermoelectric generators with flat-panel thermal concentration** Accepted for publication in *Nature Materials* 2011

Assessment of Solar Cooling Technologies

Research Objectives

•Assessment of the feasibility of using different solar cooling technologies for replacing conventional cooling.

Solar Cooling Paths

Accomplishments

- A methodology for the assessment of solar cooling technologies was proposed.
- A study on the feasibility of several solar cooling was performed.
- A model for the prediction of cooling demand from electricity consumption

Solar Cooling Challenges

Solar -Thermal Design and Testing Beam- Down Pilot Plant

Optical modeling, characterization and experimental validation of Beam Down CSP pilot plant

Geometrical Optical Model and Error Analysis of Beam Down Concentration

Illustration of model application on heliostat B8 in the reference position (i.e zero azimuth, Porelevation)

Facet centers on target plane deviated from ideal location at origin (0,0).

Sunshape, effective errors and the resulting distribution

Effect of Sun Shape on Solar Concentrating-Technology

- □ Concentrating solar collectors are designed with angular acceptance angles which are relatively close to the angular size of the solar disk 0.266°. (maximization of the capture radiation and minimization of the thermal radiation from the receiver)
- □ Concentrated technology make use of the direct component of the incoming radiation, but the DNI measurements instruments have angular acceptance angle which is ten times greater than the size of the solar disk.

The solar profile in the UAE has never been investigated, but due to the high aerosols concernsation characterizing the climate in the UAE, we expect high Association (Second Concerns)

Surface Treatment to Reduce H₂O Needs During Cleaning

Assessment of Solar Cooling Technologies

Contributions of different weather parameters 1500 Specific Humidity 1400 Diffuse Direct on a Vertical 1300 ace Load 1200 1100 1000 900 800 700 600 500 FER MAR APP MAY 001 NOV DEC

Accomplishments

- □ A methodology for the assessment of solar cooling technologies was proposed.
- □ A study on the feasibility of several solar cooling was performed.
- A model for the prediction of cooling demand from electricity consumption

echnologies Case Study of

M. T. Ali, M. Mokhtar, M. Chiesa, P. R Armstrong "Weather Driven Multivariate Regression Modeling for Estimation of Electrical Cooling Load" Accepted for Publication in Energy and Buildings (2010)

M. Mokhtar M. J. S. Braeuniger, A. Afshari, S. Sgouridis, P. R Armstrong and M. Chiesa, "Economic and Technical Assessment of Company Abu Dhabi, UAE" Applied Energy (2010), doi:10.1016/j.apenergy.2010.06.026

Solar-Assisted Post-Combustion Carbon Capture

30

EP_{inc}= 0 [\$/kWh_e], Carbon Price=0 [\$/kg_{CO2}]

100 \$/m2

200 \$/m2

- Obstacle in widely deploying PCCC is the power plant load reduction
- □ We propose and evaluate a system to reduce the output energy penalty by providing part of the PCC energy input using solar thermal energy.

M. Mokhtar, M.T. Ali, R. K., A. Abbas, N. Shah, A. Al Hajaj, P. Armstrong, M. Chiesa, S. Sgouridis "Solar-Assisted Post Combustion Carbon Capture Feasibility Study" Accepted with minor changes in *Applied Energy 2011*